Fall 2023

Fang Yu

Software Security Lab.

Dept. Management Information
Systems,

National Chengchi University

Data Structures
Lecture 3

HWs Review — What you
should have learned?

® Calculate your BMI
m Java Class Library

® Generic Geometric Progression
® [nheritance
® (Generics

m Exceptions

Project Announcement

® The Term Project: 30%

m 3.5 students as a team

® Add the team list before the end of this month (Sep. 30)
® Google form: https://forms.gle/7qL.48p9Z5EVIOMV6

® Project Github:
® https://github.com/ray880917/2023fallDS.git
® Develop your application using Eclipse with Github
= TAs will help you set up Github

= You will get extra points for having constant code update

Lets Beat Google!

® Goal: On the top of a giant’s shoulder, achieve advanced
information searching with your expertise!

m Select a topic that you/your team members have interests.

® Make sure your search engine gets better results than a
general search engine such as Google.

m Stage 0 (HW3): Keyword Counting
® Given an URL and a keyword

® Return how many times the keyword appears in the contents of
the URL

Lets Beat Google!

m Stage 1 (30%+): Page Ranking
® Given a set of keywords and URLs
m Rank the URLs based on their score
® Define a score formula based on keyword appearances

m For each URL (a web page), return its rank, score, and the
count on appearance of each keyword

Lets Beat Google!

m Stage 2 (50%+) Site Ranking

Multiple level keyword search
Given a set of Web sites (URLs) and Keywords

Rank the Web sites with their keyword appearances (including
all its sub URLS)

Define a score formula based on keyword appearances in the
URL and all its sub URLSs

For each URL (a web site), return its rank, score, and a tree
structure for its sub URLs along with the number of appearance
of each keyword in each node

Lets Beat Google!

m Stage 3 (70%+) Refine the rank of Google
® Given a set of Keywords (No URLs)
m Use search engines to find potential URLs
® Apply the ranking on Stage 2 to these Web sites

= Stage 4 (80%+) Semantics Analysis
® Derive relative keywords from the discovered Web sites
m Jteratively do the same analysis on Stage 3

m Stage 5 (90%+) Publish Your Work Online

® Build a web site/service for your searching engine

m Stage 6 (100%+) Export Your Work to App

® Wrap your search engine as an i0S/android mobile application

Important Date

Each team needs to

1. Submit the project proposal (4-8 pages) on Nov. 16
2. Give a Demo on Jan. 4

3. Upload the final report and source code before Jan. 11

~ s PE Y. L 1.8
¥ o - \ AP p - T LS !l
~ R R fgy 5 v b W R T
RTINS N4 s 28
. L'q-‘ e)

Text Processing

Strings and Pattern matching

Text Processing

® Due to internet, social networks, web and mobile
applications, a lot of documents and contents are online and
public available

® Text processing becomes one of the dominant functions of
computers

= HTML and XML

® Primary text formats with added tags for multimedia content
m Java Applet (embedded Java bytecode in the HTML)

Strings
® A string is a sequence of characters

® An alphabet 2’ is the set of possible characters for a family
of strings

® Example of alphabets:
= ASCII
m Unicode
= {0, 1}
m {AC G, T}

Strings
® [et P be a string of size m

® A substring P[i.. j] of P is the subsequence of P consisting
of the characters with ranks between i and j

m A prefix of P 1s a substring of the type P[0 .. i]
m “Fan” is a prefix of “Fang Yu, NCCU”

m A suffix of P 1s a substring of the type P[i..m — 1]
m “CCU” 1s a suffix of “Fang Yu, NCCU”

Java String Class
String S;

® Immutable strings: operations simply return information about strings (no
modification)

length() Return the length of S

charAt(1) Return the ith character

startsWith(Q) True if Q 1s a prefix of S

endsWith(Q) True is Q 1s a suffix of S

substring(i,)) Return the substring S[i,j]

concat(Q) Return S+Q

equals(Q) True is Q 1s equal to S

indexOf(Q) If Q is a substring of S, returns the index of the beginning
of the first occurrence of Q in S

Java String Class

String a = “Hello World!”;

Output

a.length()

a.charAt(1)
a.startsWith(“Hell)
a.endsWith(“rld”)
a.substring(1,2)
a.concat(“rld”)
a.substring(1,2).equals(“e”)
indexOf(“rld”)

Java String Class

String a = “Hello World!™’;

Output

a.length() 12

a.charAt(1) e
a.startsWith(“Hell) true
a.endsWith(“rld”) false
a.substring(1,2) e
a.concat(“rld”) Hello World!rld
a.substring(1,2).equals(“e”) true

a.indexOf(“rld”) 8

Java StringBuffer Class

StringBuffer S;

® Mutable strings: operations modify the strings
append(Q) Replace S with S+Q. Return S.
Insert(1,Q) Insert Q in S starting at index i. Return S
reverse() Reverse S. Return S.
setCharAt(i, ch) Set the character at index 1 in S to ch
charAt(1) Return the character at index 1in S
toString() Return a String version of S

Java StringBuffer Class

StringBuffer a = new StringBuffer();

R N

a.append(‘“Hello World!™)
a.reverse()

a.reverse()
a.insert(6,”Fang and the)
a.setCharAt(4, ‘!’)

Java StringBuffer Class

StringBuffer a = new StringBuffer();

R N

a.append(‘“Hello World!”) Hello World!
a.reverse() 'dlroW olleH
a.reverse() Hello World!
a.insert(6,”Fang and the) Hello Fang and the World!

a.setCharAt(4, ‘!’) Hell! Fang and the World!

Pattern Matching

® Given a text string T of length n and a pattern string P of
length m

® Find whether P is a substring of T

® [f so, return the starting index in T of a substring matching
P

® The implementation of T.indexOf(P)

® Applications:

m Text editors, Search engines, Biological research

Brute-Force Pattern Matching

The 1dea:

® Compare the pattern P with the text T for each possible
shift of P relative to 7, until

® either a match 1s found, or

® a]l placements of the pattern have been tried

Algorithm BruteForceMatch(T, P)

Input tcxt 7ol size n and pattern
P of size m

Output starting index of a
substring of T equal to P or —1
1f no such substring exists

for / < 0 to n — m //test shift i of the pattern
J=0
while j < m A 717+ j] = P|j]
J<=Jj+ 1
if j = m
return ///match ati
else
break while loop //mismatch
return -! //no match anywhere

Brute-Force Pattern Matching

® Time Complexity:
® O(mn), where m is the length of T and n 1s the length of P

® A worst case example:
® T = aaaaaaaaaaaaaab
m P=aab
® Need 39 comparisons to find a match

® may occur in images and DNA sequences

unlikely in English text

Can we do better?

Here are two Heuristics.
1. Backward comparison

® Compare T and P from the end of P and move backward to
the front of P

2. Shift as far as you can

® When there 1s a mismatch of P[j] and T[1]=c, if ¢ does not
appear in P, shift P[0] to T[i+1]

The Backward Algorithm

Algorithm BackwardMatch(T, P, X)

i <— m— 1 //backward
j<m-—1
repeat
it 77i] = PJj]
if j=0
return i // match at i
else
i<—i-1
J<Jj-1

else
i<—i+m—j How to shift 1?
j<m-1
until i>n-1
return —1 { no match }

The Boyer-Moore Algorithm

® The Boyer-Moore’s pattern matching algorithm is based on
these two heuristics:

® The looking-glass heuristic: Compare P with a subsequence
of T moving backwards

® The character-jump heuristic: When a mismatch occurs at T
7] = ¢
m [f P contains ¢, shift P to align the last occurrence of ¢ in P with
T1i]
m Else, shift P to align P[0] with TTi + 1]

An Example

t appears in P. e does not appears in P.
Shift to ¢ align P[0] and T[i+1]

L ast Occurrence Function

® Boyer-Moore’s algorithm preprocesses the pattern P and
the alphabet 2 to build the last-occurrence function L
mapping 2'to integers

® [(c)1s defined as (c 1s a character)
® the largest index i such that P[i] = c or
® -] if no such index exists

= Example:

m 3=1{a b, cd} a b c d
" P =abacab 4 5 3 -1

L ast Occurrence Function

® The last-occurrence function can be represented by an array
indexed by the numeric codes of the characters

® The last-occurrence function can be computed in time O(m
+ §), where m is the size of P and s is the size of X'

The Boyer-Moore Algorithm

Algorithm BoyerMooreMatch(T, P, 2)

L < lastOccurenceFunction(P, X))
i < m — 1 //backward
j<m-1
repeat
if 77i] = P[j]
if j=0
return i // match ati
else
i<—i—-1
j<i-1

else
// character-jump
I < L[Ti]]
i< i+m—min(j, 1 +1) How to shift i?
j<m-1
until i>n-1
return —1 { no match }

How to shift i after
mismatching characters?

Bj<—i+m—min(j, 1 +1[)
® Don’t shift back!

Case 1: j< 1+ 1 (a appears after Case 2: 1 + [<j (a appears

b) before b, jump!)

a a

L N |

b a | a b . |

17 | l jl I

J|m—]| lm—(1+1)]
<> | |
bla . a.. .1 b .

Another Example

a|bla|c|la|la|b|la|d|c|la|b|la|c|a|b|a|a|b|b
1
a|b|la|c|al|b
A 4 32 13 12 11 10 9 8
Case 2 a|lbla|lcla|b alb|la|c|la|b
4 5 vaR 4
Casel |a|bl|la|c|a|b a|lb|la|c|la|b
4 .4
a|lb|la|c|a|b

Is it a better algorithm?

® Boyer-Moore’s algorithm runs in time O(nm + s)

= An example of the worst case:

m T=aqaaa...a

® P=baaa

® The worst case may occur in images and DNA sequences
but it is unlikely happened in English text

® [t has been shown that in practice Boyer-Moore’s algorithm
1s significantly faster than the brute-force algorithm on
English text

The Worst-case Example

ala|la)a

S

alajla

6 5 4 3
bla|a

(o I B ~T § NG T I~
(0 o BN It~ Y

12 11 10 7
blalalala)a

X8 17 16 15 14 13
blalalal|lala

A 24 23 22 21 20 19
blalal|lala|a

HW3 (Due on 10/5)

Count A Keyword in a Web Page!
® Get a URL and a keyword from user inputs

® Return how many times the keyword appears in the
contents of the URL

® For example:
m Enter URL: http://soslab.nccu.edu.tw
® Enter Keyword: Fang
® Qutput: Fang appears X times

Hints

Count A Keyword in a Web Page!
= Apply/Implement indexOf() with Boyer-Moore’s algorithm

m Use looking-glass and character-jump heuristics

Coming up...

= We will start to discuss fundamental data structures such as
arrays and linked lists on October 5 and continue the
discussion on queues, stacks, trees, and heaps in the
following weeks.

m Read TB Chapter 3

